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ABSTRACT

A technique for calibrating an arbitrary

six-port network using nine unknown loads and

three known loads is described. The technique is

similar to the self-calibration technique first

developed by l?ngen. However, it uses full

six-port to four-port reduction so that it is
quite insensitive to errors, The theory is

illustrated with typical measurement results
showing an accuracy of better than 1.0% achievable

without optimization of the six-port to four-port

reduction constants.

INTRODUCTION

In the last few years network analysers based
on six-port networks have been proven a viable

alternative to conventional network analysers

using heterodyning systems. The six-port
technique relates power measurements to the

magnitude and phase of an unknown parameter (i.e.
reflection coefficient). As vector detection has

been replaced with scalaz measurements more

complex mathematical equations result and a

desktop computer is used to perform the necessary

calculations.

The key factor in achieving good measurement

results using six-port techniques, is the accurate

calibration of the six-port network. Methods

available to calibrate the six-port network can be

divided into two categories. One category

requires many, (greater than five) accurately
known standards [1]. Techniques of the second

category require, in the first stage many (approx,

nine) unknown but repeatable standards and finally

fewer ( three) accurately known standuds.

Procedures of the second category are of major
interest as they are suited to automatic
calibration of the six-port in a Large frequency

range.

Methods of the second category were first

introduced by Engen [3]. He showed how the

six-port network could be reduced to an equivalent

four-port network from which vector detection was

achieved; It was also shown that constraints on

the six-port network could be described as a
3-dimensional. surface. This surface was then

related to the four-port parameters. However,

parts of Engens’ theory were based on five-port to

four-port reduction. Neglecting the information

given by the sixth detector prodluced some

ambiguities which, even after imposing

restrictions on the six-port network, ctould not be

clearly resolved,

In the following paper an improvedl technique

for calibrating the six-port reflec:tometer is
presented, Full information of all power detector
readings is exploited to overcome the ambiguities

met in earlier theory [3].

CALIBRATION METHOD

Six- port to Four-po rt Reduction

The six-port reflectometer is governed by the

following equations (1) :
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where: a,~,y are power ratios measured w.r.t the
reference power at fourth network port, r is the

reflection coefficient of the load, A,B,C,D,E,F,G

are the unknown six-port constants and 4.W,TI are

fictitious power ratio angles.

The phases @,W,q are unknown variables

usually not included in conventional six-pert

circuit equations but are used here for

convenience. Each of the equations in (:1)

represents a four-port equation similar in type to

that used to describe a conventional network

analyser. The reflection coefficient (r) and the

phases I$,V,q can then be eliminated from (1) to

give an expression which describes the full set of
constraints governing the operation of the general

six-port network.
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i~=Tki ‘i = 0

where: k is the measurement number

2 2 2
Tm=a t Tk2=ar Tk2=P , Tka=Y r “kS=@y

‘k6
=a@, Tk7=D, Tk8=aY, Tk9=y, Tk,lo=l

(2)

589

0149-645X18510000– 0589 $01.00Q 198SIEEE 1985 IEEE I14TT-S Digest



The Zi”s are constants related to the primary

parameters A,B,C,D,E,F,G.

Z1 = (x/Y)2+(P/Q}2-2(l@)/(YQ) cos(t-T)

Z2 = 4COS2(f-T)-2COS( L-T )[(XQ)/(YP)+(YP)/(XQ)]

z
3

= l/(xY)2 ; Z4 = l/(PQ)2

Z5 = -[2/(XYPQ) COS(f-T)]

Z6 = -[2/Y2-2P/(QXY) COS($-T)]

‘7 = -[2/x2-2Q/(PxY) cos(f-T)]

Z* = -[2/Q2-2x/(YPQ) cos(t-T)]

Z9 = -[2/P2-2Y/(XPQ) COS(C-T)]

z
10

= (Y/X)2+(Q/P)2-2(YQ)/(XP) COS(f-T)

where : X=1X1, Y=lyl, P=lpl, W-lql

X*Y . ~ejT , p*q=PQe3f ; ~-conjugate

x = (DG-C)/(BG-A) , y = (BC-DA)/(BG-A)

P = (FG-E)/(BG-A) r q = (BE-FA)/(BG-A)

The final equa<ion determines the six-port to

four-port reduction where X,Y,P,Q,COS(C-T) aZe the

unknown reduction parameters. Observation shows

the equation is symmetrical in terms of the power

ratios a,p,y. To find X,Y,P,Q,COS(c-T) a similar

procedure to that suggested in [3] can be used.

Taking nine measurements of the power ratios a,p,y

nine equations of the form (2) are obtained. The

resulting set of equations can then be written in

matrix form (3).

[Tki][ti] = ‘1 (3)

k,i=l,2, ..9

The ti’s are defined as the Zils in (2) but have

been normalized versus Z1 : t.=z./zlo. Equation
% lin~ar’ equations and(3) represents a system o

can be solved using standard methods. The five

constants X,Y,P,Q,COS(t-T) are then determined

from the following procedure :

COS(~-T) = ‘t5.S/(2~4) , s = sign(t3)

P/Q

x/Y

x=

Y=

-1/2, 1/4
tl(l+l/V-2COS( <-T)V

. . ,., (4)

(l+V-2COS(f-T)@’4,

-1/2
. P/Q & , XY = [t3Zlo] ,

(xY.x/Y)l’2 ; P = (PQ.P/Q)l’2

(xY.Y/x)=’* ; Q= (PQ.Q/P)l’2

PQ = [t4z=o]
-1/2

In practice X,Y,P,Q,COS(C-T) will only be

determined approximate ly due to the finite
precision with which the power ratios are

measured. Improved values maybe found if more

than nine measurements are taken and the system
(3) solved in a least squares sense.

Alternatively, using the values calculated as a

first approximation, a nonlinear optimization

based on (2) may be used to generate more accurate

results [3].

The next step is to determine the fictitious

phases @or@orq. Actually we need only

determine the values to within a constant
deviation. The procedure is the sane for any of

the three angles and is only illustrated here for

the angle 0.

Two equations relating the phase angle @ to

reduction constante can be found from (1).

/3-ax2+Y2

COS(I$-T) = (5)

2XW5

1

[

1 XY (y-c@*-Q*)

tan(@-T)=—. -1+ .—. 1(6)

tan(g-T) COS(f-T) PQ (e-aX*-Y*)

Equatioti (5) is based on five-port , to

four-port reduction relationships as one of the

power- ratios is missing in tiis expression.

Equation (6) however, uses full six-port to

four-port reduction. The equation shown in (5)

may be related to that used in Engen’s theory.

The simultaneous use of both equations (5)
and (6) will give a unique value for the desired

phase, @-T. The only remaining ambiguity in using

equations (5),(6) results from not knowing the

sign of tan(g-T). However, once the sign is

chosen a unique sequence Of @-T angles are

obtained. If later tests prove the sign choice to

be wrong, the calculated sequence 1$-T has only to

be replaced by their negative values to obtain

correct results.

The phase sequences for W-rl and TI-T2 may be

obtained in a similar manner as described above.

However, it should be noted that equation (2) is

s-etrical in te~S of a,13,y and so versus +,+,q.
Thus, by rearranging the coefficients of (2) new

values
‘f xl:,j’c:~’ & =$&%::l)t::u:s’ ;$;

‘2
, Q2, COs(<

w~thout havin~ t~ reeolve (3).

Four-Port Constant Determination

The final part of the calibration
requires the calculation of the parameters for any

of the three, four-ports described by equations
(l). This is achieved through the use of three

known calibration loads: r , r The three
resulting complex equatiins

2;nr3 “
three complex

constants may then be obtained as:

(Art+B)/(Grt+l ) = @eJ(Ot-T) *=1,2,3. (7)

me existence of T in (7) does not contradict
equation (I) since only the difference between @’e

are of importance. Solving equation (7) will then
yield the desired four-port parameters. i.e.
A,B,G. The four-port parameters of the two
remaining expressions in (1) are calculated in a
similar fashion.

AS each of the four-port eqUatiOnS is capable

of independent measurement of the unknown quantity

(r), it appears reasonable to find only one set of
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four-port constants. This can be done if the user

is willing to tradeoff accuracy for speed of

operation.

REFLECTION COEFFICIENT MEASUREMENTS

To verify the new calibration scheme

measured and predicted reflection coefficients of

a number of loads were compared.

The six-port tested was a design similar to

that first described by Engen [2]. It was

constructed of Q,H hybrids made in stripline

technology and terminated in WG-16 rectangular

waveguide, For this configuration the separation

of the q’s [2] approach 120°. Tests were carried

out in the 8-12 GHz range. Six-port to four-port
reduction was achieved by generating nine

different reflection coefficients using an

attenuator backed by a sliding short. The values
chosen were : four positions of the sliding

short, phase difference greater than 45°, four

similar positions with a constant attenuation (
1-3 dB) and an imperfect match realized by setting

the attenuator to 20dB. The three known standards

used in calibration were the open, ehort and

offset short (Phase offset 45-1350).

Table I shows the measured reflection
coefficients of different positions of a sliding
termination, The termination used consisted of a
ldB attenuator backed by a sliding short circuit,

The operating frequency was 10 GHz and no
optimization of the six-port to four-port
reduction constants was used.

PREDICTED I’ MEASURED r

lrl PHASE r Irl PHASE I’

0.5122 -145.2 0.5107 I -145.2

I 0.5122 I 169.8 II 0.5077 t 169.3 I

0.5122 124.8 0.5083 124.6

0.5122 79.8 0.5087 79.4

0.5122 34.8 0.516 34.1

0.5122 –10.2 0.516 -10.79

0.5122 -55.2 0.5135 -55.69
I II I

I
0.5122 –100.2 0.5168 -101.1

I

Table 1 : comparison of Measured and Predicted

Reflection Coefficients of

Sliding Termination

The important features to note are that lrl

had to be constant ( Irl = 0.5122 ) and the

phase separation should be a~50. The observed

worst case errors are therefore, 0.9% in the

magnitude and 0.9° in the phase.
Table 2 shows measured and predicted

reflection coefficients on the unit circle under

the same operating conditions.

The worst case errors are again of the same

order as shown previously. Results from tests at

other frequencies in the 8-12 GHz range showed

that the accuracy was essentially independent of
frequency.

PREDICTED r MEASURED r

lrl PHASE r Ii-l PHASE r

1.0 0.0 1.00015 CI.051

1.0 45.0 0.9975 414.63 1

1.0 90.0 I 0.99956 90.04

1.0 135.0 I 0.9891 1.35.25 i,
I 1.0 180.0 I 1.0006 i Imml

1.0 -135.0 0.993 -134.0

1.0 -90.0 0.9977 -90.5

1.0 -45.0 1.0001 -45.16 ;

Table 2 ; Comparison of Measured and Predicted

Reflection Coefficients of Sliding Short

CONCLUSIONS

The calibration procedure described is a

refined self-calibration technique for the

six-port reflectometer. The new technique

retaines the advantages of earlier methods, using

a minimum of accurately known loads but without

the necessity for hardware restrictions inherent

in other theory [3]. The new procedure boaste

full six-port to four-port reduction theory in

which all ambiguities are eliminated and network

symmetry iS fully exploited,
Accuracy is very good, showing worst case

errors of less than 1% are achievable without any

optimization of the reduction constants.

Calibration is also relatively fast, tiiking about

as long as calibration techniques which use many

known calibration standards.
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Fi.g.1: Six-port Reflectometer Configuration

Q,H - 90° and 180° hybrids.

CRU - Complex Ratio Measuring Unit.

Switch position (a) Reflective mode

(b) Transmittive mode

* The measurement system shown in Fig. 1 is

analogous to the conventional Network Analyser

(NA) system. However, the conventional

hetrodyning circuitry used within the CRU has

been replaced with simple power detection.

FU1l analogy with the old type of NA operations

is maintained through use of the six-port to

four-port reduction described earlier. The

necessary reduction has been demonstrated for

the device operating in the reflective mode

but may also be achieved in the transmittive

mode. It has been experimentally verified,

that irrespective of the choice of operating

mode, the reduction will be identical. To

within the bounds of the measurement error

the same reduction constants are calculated
using either a reflective or transmittive

mode reduction.
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