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ABSTRACT

A technique for calibrating an arbitrary
six-port network using nine unknown loads and
three known loads is described. The technique is
similar to the self-calibration technique first
developed by Engen. However, it uses full
six-port to four-port reduction so that it is
quite insensitive to errors. The theoxry is
illustrated with typical measurement results
showing an accuracy of better than 1.0% achievable
without optimization of the six-port to four-port
reduction constants.

INTRODUCTION

In the last few years network analysers based

on six-port networks have been proven a viable
alternative to conventional network analysers
using heterodyning systems. The six-port
technique relates power measurements to the

magnitude and phase of an unknown parameter (i.e,
reflection coefficient). As vector detection has
been replaced with scalar measurements more
complex mathematical equations result and a
desktop computer is used to perform the necessary
calculations.

The key factor in achieving good measurement
results using six-port techniques, is the accurate
calibration of the six-port network. Methods
available to calibrate the six-port network can be
divided into two categories, One category
requires many, (greater than five) accurately
known standards [1]. Techniques of the second
category require, in the first stage many (approx.
nine) unknown but repeatable standards and finally
fewer (three) accurately known standards.
Procedures of the second category are of major
interest as they are suited to automatic
calibration of the six-port in a Jlarge frequency
range.

Methods of the second category were first
introduced by Engen [3]. He showed how the
six-port network could be reduced to an equivalent
four-port network from which vector detection was
achieved: It was also shown that constraints on
the six-port network could be described as a
3-dimengional surface. This surface was then
related to the four—-port parameters. However,
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parts of Engens' theoxry were based on five-port to
four-port reduction. Neglecting the information
given by the sixth detector pfoduced some
ambiguities which, even after imposing
restrictions on the six-port network, could not bhe
clearly resolved.

In the following paper an improved technigque
for calibrating the six-port reflectometer is
presented. Full information of all power detector
readings is exploited to overcome the ambiguities
met in earlier theory [3].

CALIBRATION METHOD

Six-port to Four—-port Reduction

The six—port reflectometer is governed by the
following equations (1)

Ar+B i Cr+b v Er'+F 3n

—— = VGe ’ — = yBe ’ —— = YYe (1)
GI'+1 GI'+1 GI'+1

where: «,B,y are power ratios measured w.r.t the

reference power at fourth network port, I is the
reflection coefficient of the load, A,B,C,D,E,F,G
are the unknown six-port constants and ¢,y,n are
fictitious power ratio angles.

The phases ¢,y,n are unknown variables
usually not included in conventional six-port
circuit equations but are used. here for
convenience. Each of the equations in (1)
represents a four-port equation similar in type to
that wused to describe a conventional network
analyser, The reflection coefficient (') and the
phases ¢,¥y,n can then be eliminated from (1) to
give an expression which describes the full set of
constraints governing the operation of the general
six—port network.
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where: k is the measurement number

_ 2 _ _ a2 _.2 .
Tea™® ¢ Tyo=0r T =B T =Y v =AY

Tre™Pr Tyq=Br Tyg=o7r Tpg=¥r Tyi0™1

1985 IEEE MTT-S Digest



The Zi‘'s are constants
parameters A,B.C,D.E,F,G.

related to the primary

z, = (X/0)2+(B/) -2(X)/(¥Q) cos(-T)

acos?( §-7)-2c08( £-T)[(XQ)/ (YR YH(YP)/(XQ)]

ZZ =

z, = 1)z, = /()
7, = ~[2/(X¥PQ) cos(£-T)]

z, = ~[2/¥%-2P/(QXY) cos(£-T)]
Z7 = —[Z/XZ—ZQ/(PXY) cos(£-T)]
z, = —[2/Q"~2X/(YPQ) cos(¢-T)]
29 = —[Z/PZ—ZY/(XPQ) cos(£-T)]

z,, = (Y/X)*H(@/P)’-2(¥Q)/(XP) cos(£-T)

where : X=|x{|, ¥=|yl, P=Ipl|., Q=Iq|

* a7 j¢

*x
X y = XYe s P Q= PQe ; *~ conjugate

(BC-DA }/(BG-A)

x (DG-CY/(BG-A) , ¥

p (FG-E)/(BG-A) , q (BE-FA)/(BG-A)
The final equation determines the six-port to
four-port reduction where X,Y,P,Q,cos(£{-7) are the
unknown reduction parameters. Obgervation shows
the equation is symmetrical in terms of the power
ratios «,B,y. To find X,¥,P,Q,co8({-7) 2 similar
procedure to that suggested in [3] can be used.
Taking nine measurements of the power ratios «,B,y

nine equations of the form (2) are obtained. The
resulting set of equations can then be written in
matrix form (3).
t,]1 =-1 3
(T, 10t] (3
k,i=1,2,..9

The ti's are defined as the 2i's in (2) but have
been normalized versus Zl H ti=zi/z . Equation
(3) represents a system o% lin8ar™ eduations and
can be solved using standard methods. The five

constants X,Y,P,Q,cos({-T7) are then determined
from the following procedure :

cos(¢-T) = —tS.s/(2v€;E;) . s = sign(t,)

t1(1+1/v;zcos(;-r)v'1/2) 174

B/Q = (4)

(1+V—ZCos(£-T)Vl/2)

-1/2 ~1/2

XY =P/QW , XY = [t,Z,,] P PQ = [t,2 ]

1/2 1/2
x = (xv.x0y? ; p = (po.2/)"

1/2 i/2
Y = (XY.¥/X) /2, Q = (PQ.Q/P) /

In practice X,Y,P,Q,cos({(-7) will only be
determined approximately  due to the finite
precision with which the power ratios are
measured. Improved values maybe found if more

than nine measurements are taken and the gsystem
(3) solved in a least squares sense.
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Alternatively, using the values calculated as a
first approximation, a nonlinear optimization
based on (2) may be used to generate more accurate
results {3].

The next step is to determine the fictitious

phases ¢ or Yy or n. Actually we need only
determine the values to within a constant
deviation. The procedure is the same for any of

the three angles and is only illustrated here
the angle ¢.

Two equations relating the phase angle ¢ to
reduction constants can be found from (1).

for

B—ax2+Y2

cos(d-T) =

(s)
2XYVE

tan(¢-T1)

1 1 xv (y-o®9?)
[t mom e,
tan(¢-7) CoS(£-T) PQ (B-oX -Y )

Equation (5) is based on five-port, to
four—-port reduction relationships as one of the
power ratios is missing in this expression.
Equation (6) however, uses full six-port to
four-port reduction. The equation shown in (5)
may be related to that used in Engen's theory.

The simultaneous use of both equations (5)
and (6) will give a unique value for the desired
phase, ¢-T. The only remaining ambiguity in using
equations (5),(6) results from not knowing the
sign of tan(¢-1). However, once the sign is
chosen a unique sequence of ¢-7 angles are
obtained. If later tests prove the sign choice to
be wrong, the calculated sequence ¢-T has only to
be replaced by their negative values to obtain
correct results.

The phase sequences for W-Ti and n-7, may be
obtained in a similar manner as described above.
However, it should be noted that equation (2) is
symmetrical in terms of «,B,y and so versus ¢,¥,n.
Thus, by rearranging the coefficients of (2) new
values of xl, Y., Pl' Ql' cos( ¢ 'Tl) and X_, Y.,
P2, Q. ., CosS(£_-T % can be obtained througﬁ (i)
without having to resolve (3).

Four—Port Constant Determination

The final part of the calibration
requires the calculation of the parameters for any
of the three, four-ports described by equations
(1). This is achieved through the use of three
known calibration loads: r_, [_, [_. The three
resulting complex equations “in “three complex
constants may then be obtained as:

1=1,2,3.

(AL +B)/(Gr +1) = vaed (¥ (7)

The existence of T in (7) does not contradict
equation (1) since only the difference between ¢'s
are of importance. Solving equation (7) will then
vield the desired four-port parameters. i.e,
A,B,G. The four—port parameters of the two
remaining expressions in (1) are calculated in a
similar fashion.

* As each of the four-port equations is capable
of independent measurement of the unknown quantity
('), it appears reasonable to find only one set of



four-port constants. This can be done 1if the user
ig willing to tradeoff accuracy for speed of
operation.

REFLECTION COEFFICIENT MEASUREMENTS

To verify the new calibration scheme
measured and predicted reflection coefficients of
a number of loads were compared.

The six-port tested was a design similar +t¢
that first described by Engen [2]. It was
constructed of Q,H hybrids made in stripline
technology and terminated in WG-16 rectangular
waveguide. For this configuration the separation
of the g's [2] approach 120°. Tests were carried
out in the 8-12 GHz range. Six-port to four-port
reduction was achieved by generating nine
different reflection coefficients using an
attenuator backed by a sliding short. The values
chosen were : four positions of the sliding
short, phase difference greater than 45°, four
similar positions with a constant attenuation (
1-3 dB) and an imperfect match realized by setting
the attenuator to 20dB. The three known standards
used in calibration were the open, short and
offset short (Phase offset 45-135°).

Table 1 shows the measured reflection
coefficients of different positions of a sliding
termination. The termination used consisted of a
1dB attenuator backed by a sliding short circuit.
The operating frequency was 10 GHz and no
optimization of the six-port to four-port
reduction constants was used.

PREDICTED T MEASURED T
(T] PHASE T IT] PHASE T
0.5122 -145.2 0.5107 -145.2
0.5122 169.8 0.5077 169.3
0.5122 124.8 0.5083 124.6
0.5122 79.8 0.5087 79.4
0.5122 34.8 0.516 34.1
0.5122 -10.2 0.516 -10.79
0.5122 -55.2 0.5135 ~55.69
0.5122 -100.2 0.5168 -101.1
Table 1 : Comparison of Measured and Predicted

Reflection Coefficients of
sliding Termination

The important features to note are that |[T]
had to be constant ( |IT] = 0.5122 ) and the
phase separation should be 59, The observed

worst case errors are therefore, 0.9% in the
magnitude and 0.9° in the phase.

Table 2 shows measured and predicted
reflection coefficients on the unit circle under

the same operating conditions.

The worst case errors are again of the same
order as shown previously. Results from tests at
other frequencies in the 8-12 GHz range showed
that the accuracy was essentially independent of
frequency.
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PREDICTED T MEASURED T

T PHASE T T PHASE T

1.0 0.0 1.00015 0.051

1.0 45.0 0.9975 44.63

1.0 90.0 0.99956 90.04

1.0 135.0 0.9891 135.25

1.0 180.0 1.0006 180.04

1.0 -135.0 0.993 ~134.0

1.0 -90.0 0.9977 -90.5

1.0 -45.0 1.0001 -45.16
Table 2 : Comparison of Measured and Predicted

Reflection Coefficients of Sliding Short
CONCLUSIONS

The calibration procedure described is a
refined gself-calibration technique for the
six—-port reflectometer. The new technique
retaines the advantages of earlier methods, using

a minimum of accurately known loads but without
the necessity for hardware restrictions inherent
in other theory [3]. The new procedure boasts
full six-port to four-port reduction theory in
which all ambiguities are eliminated and network
symmetry is fully exploited.

Accuracy is very good, showing worst case
errors of less than 1% are achievable without any
optimization of the reduction constants.
Calibration is also relatively fast, taking about
as long as calibration techniques which use many
known calibration standards.
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Fig.l: Six-port Reflectometer Configuration
Q,H - 90° and 180° hybrids.
CRU - Complex Ratio Measuring Unit.
Switch position (a) Reflective mode
(b) Transmittive mode

* The measurement system shown in Fig. 1 is
analogous to the conventional Network Analyser
(NA) system. However, the conventional
hetrodyning circuitry used within the CRU has
been replaced with simple power detection.
Full analogy with the old type of NA operations
is maintained through use of the six-port to
four-port reduction described earlier. The
necessary reduction has been demonstrated for
the device operating in the reflective mode
but may also be achieved in the transmittive
mode. It has been experimentally verified,
that irrvespective of the choice of operating
mode, the reduction will be identical. To
within the bounds of the measurement error

the same reduction constants are calculated
using either a reflective or transmittive
mode reduction.
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